SIGIR18 Papers about Recommendation

Wu, 2019/4/2

Overview

- Online recommendation(1)
- Recommendation with Social Networks(2+1)
 - Group representation, community detection, sequence-aware Rec
- Recommendation with Knowledge Base(1)
- Improve traditional methods(3)
 - APR, CMN, Bandit problem
- Some specific tasks(5)
 - Recommend email, mention, citation, Wikipedia article section
 - conversational recommender system
- User modeling: Geo-social based(1)

Some useful basics

- Recommendation
 - MF, BPR
- Sequence-aware recommendation
 - RNN, LSTM, GRU, Memory network
- Clustering
- Learn image representation
 - CNN, Inception, VGG, ResNet
- Graph embedding

Online recommendation

- In real life, new ratings, users and items come continually
- Four challenges of online recommendation
 - Online updating and advoiding overload
 - Capturing users' long-term interests
 - Capturing users' drifted interests
 - Modeling new users and items

RKMF

- MF based
- Assumption
 - the model build from ${\bf S}({\rm ratings\ set})$ and the model build from ${\bf SU}\{r_{u,i}\}$ is mostly the same from a global perspective
 - For new-user, his (local) features might change a lot from the new rating

RKMF: Online updating

- Update(retrain) the related user or item only
- 1: **procedure** USERUPDATE $(S, W, H, r_{u,i})$
- $2: \qquad S \leftarrow S \cup \{r_{u,i}\}$
- 3: **return** USERRETRAIN(S, W, H, u)
- 4: end procedure
- 5: procedure USERRETRAIN (S, W, H, u^*) initialize u^* -th row in W 6: 7: repeat for $r_{u,i} \in C(u^*, \cdot)$ do 8: for $f \leftarrow 1, \dots, f$ do $w_{u,f} \leftarrow w_{u,f} - \alpha \frac{\partial}{\partial w_{u,f}} \operatorname{Opt}(S, W, H)$ 9: 10: 11: end for end for 12:13:until Stopping criteria met 14:return (W, H)15: end procedure

Figure 3: Online updates for new-user problem.

- 1: procedure ADDRATING $(S, W, H, r_{u,i})$ 2: $S \leftarrow S \cup \{r_{u,i}\}$ 3: return UPDATERATING $(S, W, H, r_{u,i})$ 4: end procedure
- 5: procedure REMOVERATING $(S, W, H, r_{u,i})$ $S \leftarrow S \setminus \{r_{u,i}\}$ 6: return UPDATERATING $(S, W, H, r_{u,i})$ 7: 8: end procedure 9: procedure UPDATERATING $(S, W, H, r_{u,i})$ if $P_u(\text{train}|r_{u,i}) > \text{RANDOM}$ then 10: $(W, H) \leftarrow \text{USERRETRAIN}(S, W, H, u)$ 11: end if 12:if $P_i(\text{train}|r_{u,i}) > \text{RANDOM then}$ 13: $(W, H) \leftarrow \text{ITEMRETRAIN}(S, W, H, i)$ 14:15:end if 16:return (W, H)17: end procedure

Figure 4: General algorithm for online-updates.

Rendle S, Schmidt-Thieme L. Online-updating regularized kernel matrix factorization models for large-scale recommender systems[C]//Proceedings of the 2008 ACM conference on Recommender systems. ACM, 2008: 251-258.

RMFX

• BPR based

- Use **reservoir** to capture users/ long-term interests
- **Reservoir**: a batch of ratings
- With probability |R|/t and replaces uniformly at random an instance from the reservoir, the reservoir is a random sample of the current dataset.

RMFX Framework

Input:

Reservoir representing a sample of the stream at time t: R; Regularization parameters λ_W , λ_{H^+} , and λ_{H^-} ; Learning rate η_0 ; Learning rate schedule α ; Number of iterations T_S , and T_{θ} ; Parameter c to control how often to perform the model updates.

Output: $\theta = (\mathbf{W}, \mathbf{H})$ 1: initialize \mathbf{W}_0 and \mathbf{H}_0

- 2: initialize sample stream $S' \leftarrow \emptyset$
- 3: counter $\leftarrow 0$
- 4: for t = 1 to T_S do
- 5: $R \leftarrow updateReservoir(R)$
- 6: counter \leftarrow counter + 1
- 7: **if** $c = \text{counter$ **then** $}$
- 8: $\theta \leftarrow \mathbf{updateModel}(S_t, \lambda_W, \lambda_{H^+}, \lambda_{H^-}, \eta, \alpha, T_{\theta})$
- 9: $\operatorname{counter} \leftarrow 0$
- 10: **end if**
- 11: **end for**
- 12: return $\theta_T = (\mathbf{W}_T, \mathbf{H}_T)$

RMFX

- It is still far from the accuracy achieved by the offline cases if use the reservoir data for online updating
- How to sample the pairs needed for creating the contrasts

RMFX: online update

RMFX Model Update based on SGD for MF using active learning with small buffers	5: Compute the distances δ_{uijb} for each pair $p_b = ((u, i), (u, j_b)) \in P, b = 1 \dots 59$ in the small buffer
Input:	6: Sample a pair $p^* = ((u, i), (u, j))$ from the buffer
Reservoir representing a sample of the stream at time	with probability proportional to its informativeness:
t: R; Regularization parameters λ_W , λ_{H^+} , and λ_{H^-} ;	$1/\delta_{uijb}$
Learning rate η_0 ; Learning rate schedule α ; Number of	// Perform the model updates as follows:
iterations T_{θ} .	7: $y_{uij} \leftarrow sign(x_{ui} - x_{uj})$
Output: $\theta = (\mathbf{W}, \mathbf{H})$	8: $\mathbf{w}_u \leftarrow \mathbf{w}_u + \eta \ y_{uij} \ (\mathbf{h}_i - \mathbf{h}_j) - \eta \ \lambda_W \ \mathbf{w}_u$
1: procedure UPDATEMODEL $(S_t, \lambda_W, \lambda_{H^+}, \lambda_{H^-}, \eta_0, \alpha, T_{\theta})$	9: $\mathbf{h}_i \leftarrow \mathbf{h}_i + \eta \ y_{uij} \ \mathbf{w}_u - \eta \ \lambda_{H^+} \ \mathbf{h}_i$
2: for $t = 1$ to T_{θ} do	10: $\mathbf{h}_j \leftarrow \mathbf{h}_j + \eta \ y_{uij} \ (-\mathbf{w}_u) - \eta \ \lambda_{H^-} \ \mathbf{h}_j$
3: Select a user-item pair (u, i) from R uniformly at	11: $\eta = \alpha \cdot \eta$
random	12: end for
4: Construct a small buffer for user u by sampling	13: return $\theta = (\mathbf{W}_{T_{\theta}}, \mathbf{H}_{T_{\theta}})$
59 negative items j's from R ("59 trick" [16, 6])	14: end procedure

SPMF

- Binary classification with negative sampling Based(likely) $O(x_{ij}) = -(x_{ij}log\sigma(f(i, j; \theta)) + (1 - x_{ij})log(1 - \sigma(f(i, j; \theta))))$
- Update model use both reservoir and new data
- Similar methods to sample train example from reservoir and new data: tend to sample the data that has **low** score

$$w_{ij} = exp(\frac{rank_{ij}}{|\mathcal{W} \cup \mathcal{R}|})$$
(13)

$$P(x_{ij}) = \frac{w_{ij}}{\sum_{x_{ij} \in \mathcal{W} \cup \mathcal{R}} w_{ij}}$$
(14)

Wang W, Yin H, Huang Z, et al. Streaming ranking based recommender systems[C]//The 41st International ACM SIGIR Conference on Research & Development in Information Retrieval. ACM, 2018: 525–534.

SPMF algorithm

1 $\mathcal{R}' = \emptyset;$

2 **foreach** data instance $\{u_i, v_j\} \in \{\mathcal{R} \cup \mathcal{W}\}$ **do** if u_i or v_j is a new user or a new item then 3 Generate u_i or v_j based on Gaussian prior distribution; 4 end 5 else 6 Get \boldsymbol{u}_i or \boldsymbol{v}_i from Θ^t ; 7 end 8 Compute the score $f(i, j; \Theta^t) = u_i \cdot v_j$; 9 if this is an instance in W then 10 Sample this instance with probability $|\mathcal{R}|/(t + i')$ where 11 $1 \leq i' \leq |\mathcal{W}|$ to a temporary set \mathcal{R}' ; end 12 13 end

14 Rank data instances in $\{\mathcal{R} \cup \mathcal{W}\}$ decreasingly according to $f(i, j; \Theta^t)$ to get a rank $rank(x_{ij})$ for each x_{ij} ; 15 Compute w_{ij} for each x_{ij} in $\{\mathcal{R} \cup \mathcal{W}\}$ using Equation 13; 16 Compute $P(x_{ij})$ for each x_{ij} in $\{\mathcal{R} \cup \mathcal{W}\}$ using Equation 14; 17 while next window of data have not arrived do Sample a data instance x_{ij} from $\mathcal{R} \cup \mathcal{W}$ according to $P(x_{ij})$; 18 Sample *N* negative examples x_{in} from $\mathcal{D}_t^- = \mathcal{D} - \mathcal{R} - \mathcal{W}$ by 19 fixing the user u_i ; Update the gradients of the latent variables associated with users 20 and items in the batch based on Equation 10 and 11; Update the latent variables by batch SGD; 21 22 end 23 Replace the data in \mathcal{R} randomly with the data in \mathcal{R}' ;

sRec

- Sequence PMF
 $$\begin{split} &U_i^t | U_i^{t-\tau} \sim \mathcal{N}\left(U_i^{t-\tau}, \sigma_U^2 \tau I \right), \tau > 0. \end{split}$$
- New user
 - $U_i^0 \sim \mathcal{N}(0, I), \forall i, t_U(i) = 0.$

$$U_{i}^{t_{U}(i)} | \left\{ R_{ij}^{t} : t < t_{U}(i) \right\}$$

$$\sim \mathcal{N} \left(\underset{k:t_{U}(k) < t_{U}(i)}{\operatorname{mean}} \mathbb{E} \left(U_{k}^{t_{U}(i)} | \left\{ R_{ij}^{t} : t < t_{U}(i) \right\} \right), \sigma_{U0}^{2} I \right)$$

• Focus on drifted interests

Chang S, Zhang Y, Tang J, et al. Streaming recommender systems[C]//Proceedings of the 26th International Conference on World Wide Web. International World Wide Web Conferences Steering Committee, 2017: 381-389.

Experiments(from SPMF)

• Evaluation metric: Hit ratio, don't consider rank before k comparing to NDCG

Overview

- Online recommendation(1+3)
 - Fast online updating
 - Capture both long-term and drifted interests
 - Modeling new users or items
- Recommendation with Social Networks(2+1)
 - Group representation, community detection, sequence-aware Rec
- Improve traditional methods(3)
 - APR, CMN, Bandit problem

Recommendation with Social Networks

- Group representation
 - Attention based on specific user and item
- Community detection
 - Cross-domain clustering
- Sequence-aware recommendation
 - Dynamic attention over time t base on social information

Attentive Group Recommendation

- Key problem: how to aggregate the preferences of group members to infer the decision of a group
 - Naïve method: average aggregation
- Example and intuition
 - When you want to see a movie with your
 - friends ? Maybe average aggregation
 - boyfriend or girlfriend ?
 - family ?

Attentive group representation

Interaction learning based on NCF

 $\begin{cases}
\mathbf{e}_1 = \operatorname{ReLU}(\mathbf{W}_1\mathbf{e}_0 + \mathbf{b}_1) \\
\mathbf{e}_2 = \operatorname{ReLU}(\mathbf{W}_2\mathbf{e}_1 + \mathbf{b}_2) \\
\dots \\
\mathbf{e}_h = \operatorname{ReLU}(\mathbf{W}_h\mathbf{e}_{h-1} + \mathbf{b}_h)
\end{cases}$

$$\begin{cases} \hat{r}_{ij} = \mathbf{w}^T \mathbf{e}_h, & if \ \mathbf{e}_0 = \varphi_{pooling}(\mathbf{u}_i, \mathbf{v}_j) \\ \hat{y}_{lj} = \mathbf{w}^T \mathbf{e}_h, & if \ \mathbf{e}_0 = \varphi_{pooling}(\mathbf{g}_l(j), \mathbf{v}_j) \end{cases}$$

Model optimization

- BPR $|OSS: -\log \sigma(\hat{r}_{ij} \hat{r}_{is})|$
- To decrease the BPR loss on a **multi-layer model**, a trivial solution is to **scale up** the weights in each update. As such, it is crucial to enforce the L2 regularization on the weights to avoid this trivial solution.
- Pairwise square loss(without regularization)

$$\mathcal{L}_{user} = \sum_{(i,j,s) \in O} (r_{ijs} - \hat{r}_{ijs})^2 = \sum_{(i,j,s) \in O} (\hat{r}_{ij} - \hat{r}_{is} - 1)^2,$$

$$\mathcal{L}_{group} = \sum_{(l,j,s)\in O'} (y_{ljs} - \hat{y}_{ljs})^2 = \sum_{(l,j,s)\in O'} (\hat{y}_{lj} - \hat{y}_{ls} - 1)^2,$$

Table 1: Case studies of a sampled group on the effect of attention (Section 3.2). The member weights and prediction scores of the group for positive venues (Venue #30, #32, #106) and negative venues (Venue #65, #121, #123) are shown (Section 3.2).

	Model	User #805	User #806	User #807	ŷ
Venue #30	GREE	0.333	0.333	0.333	0.260
venue #50	AGREE	0.286	0.302	0.412	0.572
Vanue #20	GREE	0.333	0.333	0.333	0.096
venue #52	AGREE	0.222	0.583	0.195	0.370
Vanua #106	GREE	0.333	0.333	0.333	0.192
venue #100	AGREE	0.364	0.287	0.347	0.318
Venue #65	GREE	0.333	0.333	0.333	0.132
venue #05	AGREE	0.408	0.311 0.281 0.09		0.091
Vonue #121	GREE	0.333	0.333	0.333	0.132
venue #121	AGREE	0.335	0.374	0.291	0.053
Venue #123	GREE	0.333	0.333	0.333	0.109
	AGREE	0.288	0.411	0.301	0.063

Attentive Recurrent Social Recommendation

- Key problem
 - The complex interplay between users' internal interests and the social influence from the social network drives the evolution of users' preferences over time
 - Traditional approaches either neglected the social network structure for temporal recommendation or assumed a static social influence strength for static social recommendation

Notations

Notations	Description
U	Userset, $ U = M$
V	Itemset, $ V = N$
a,b,c,u	User
i,j,k,v	Item
$R^t \in \mathbb{R}^{M \times N}$	Rating matrix at time <i>t</i>
$S \in \mathbb{R}^{M \times M}$	Social network matrix, with s_{ba} denotes whether a follows b
$L_a^t \in V$	The item list that a likes at time t, $L_a^t = [i : r_{ai}^t = 1]$
$Q \in \mathbb{R}^{D \times N}$	Item latent matrix in the dynamic latent space
$W \in \mathbb{R}^{D \times N}$	Item latent matrix in the static latent space
$P \in \mathbb{R}^{D \times N}$	User base latent matrix in the static latent space
q_i	The dynamic embedding of item i in the dynamic latent space
w _i	The static embedding of item i in the static latent space
p a	The static embedding of user a in the static latent space
\mathbf{x}_{a}^{t}	The input vector of user a at time t
h_a^t	The dynamic latent vector of a at time t
α^t_{ab}	The dynamic influence strength of b to a at time t
β_{ab}	The static influence strength of b to a

$\hat{r}_{\mathrm{a}i}^t$ DARSE \oplus SARSE q_i Wi Social Social $\rightarrow h_a^{t+1}$ LSTM h_a^{t-1} LSTM h_a^t \mathbf{x}_{a}^{t+1} T+1 $\sum_{b\in S_a}\alpha^t_{ab}h^{t-1}_b$ Т $\sum_{b\in S_a}\beta_{ab}p_b+p_a$ \mathbf{x}_{a}^{t} **Dynamic Attention Input Pooling Static Attention** Dynamic Input Pooling Attention $h_b^{t-1}(s_b)$ (s_a) $\langle s_a \rangle$ (q_{x1}) $(q_{x2})\cdots (q_{x|L_a^t})$ (p_b) s_b (p_a) ---($(x1, \dots x|L_a^t|) \subseteq L_a^t$ $b \in S_a$ $b \in C_a$

 $\hat{r}_{ai}^t = \hat{r}_{D,ai}^t + \hat{r}_{S,ai} = q_i' \times h_a^t + w_i' \times \widetilde{p}_a,$

Proposed model

Dynamic part

$$\mathbf{x}_{a}^{t} = Pooling(Q(:, L_{a}^{t}))$$

$$m^{t}(a, b) = ReLU(A_{5} \times ReLU(A_{1} \times h_{a}^{t-1} + A_{2} \times h_{b}^{t-1} + A_{3} \times e_{a} + A_{4} \times e_{b}))$$

$$\alpha^{t}_{ab} = \frac{exp(m^{t}(a, b))}{\sum_{c \in S_{a}} exp(m^{t}(a, c))}.$$

$$\widetilde{h}^{t}_{a} = \sum_{b \in S_{a}} \alpha^{t}_{ab} \times h^{t}_{b}$$

$$h_a^t = f_{LSTM}([\mathbf{x}_a^t, h_a^{t-1}, \widetilde{h}_a^{t-1}]),$$

 $\hat{r}_{D,ai}^t = q_i' \times h_a^t.$

Static part

 $n(a, b) = ReLU(B_5 \times ReLU(B_1 \times p_a + B_2 \times p_b + B_3 \times e_a + B_4 \times e_b)).$

$$\beta_{ab} = \frac{exp(n(a, b))}{\sum_{c \in S_a} exp(n(a, c))}.$$

$$\hat{r}_{S,ai}^t = w_i' \times \widetilde{p}_a.$$

Model optimization

• Focus on the implicit feedback of users, we adopt the widely used log loss function

$$L_{\Theta}(\mathbf{R}, \hat{\mathbf{R}}) = -\sum_{t=1}^{T} \sum_{a=1}^{M} \sum_{i=1}^{N} [r_{ai}^{t} log(\hat{r}_{ai}^{t}) + (1 - r_{ai}^{t}) log(1 - \hat{r}_{ai}^{t})].$$

Table 2: The statistics of the two datasets.

Dataset	Epinions	Gowalla
Users	4,630	21,755
Items	26,991	71,139
Time Windows	12	4
Total Links	78,356	257,550
Training Ratings	62,872	278,154
Test Ratings	2,811	52,448
Link Density	0.35%	0.053%
Rating Density	0.050%	0.018%

(c) Gowalla HR@10

(d) Gowalla NDCG@10

64

Cross-Domain Recommendation via Clustering on Multi-Layer Graphs

- Key problem
 - social connections between users (i.e. follower/followee relationship) that are often hidden behind the privacy settings
 - So, to avoid privacy concerns, we propose to use user generated data on multiple platforms to **detect the similarities between users**.

Cross domain community detection

- Similarity graph construction
- Community detection on one domain
 - Ncut problem and Spectral clustering
- Cross domain community detection
 - Spectral clustering on multi-layer graph
- Incorporating inter-layer relationship

Notations

Table 1: Notations summary

Symb.	Description
vecu	Distribution of the user <i>u</i> among items (venue cate-
	gories) in <i>u</i> 's past
C_u	Community of the user <i>u</i>
γ	Parameter that controls personal aspect of rec-n
θ	Parameter that controls group aspect of rec-n
N	Number of users
M	Number of data sources (graph layers)
Li	Laplacian matrix of the <i>i</i> -th layer
Ui	Eigendecomposition matrix of the <i>i</i> -th layer
Ĺi	Inter-layer relationship regularized Laplacian of the
	<i>i</i> -th layer
\hat{U}_i	Inter-layer relationship regularized eigendecomposi-
	tion matrix of the <i>i</i> -th layer
\hat{L}_{mod}	Sub-space regularized Laplacian matrix
W _R	Adjacency matrix of inter-layer similarity graph
k	Parameter that controls the number of clusters
α	Parameter that controls sub-space regularization
β_i	Parameter that controls inter-layer regularization for
	the layer <i>i</i>

Similarity graph construction

• For every graph node pair (i, j) from the m-th graph layer, the corresponding distance is:

$$d_{m_{i,j}} = e^{-\frac{||x_{m_i} - x_{m_j}||^2}{\sigma}},$$

• A graph layer is built from the user generated data from the same platform

Community detection on one domain(a graph layer)

- NCut problem: divide the nodes to communities that are formed by users that are most similar to each problem
- NCut problem is NP-hard.
- Approximation by spectral clustering

```
\min_{U \in \mathbb{R}^{n \times k}} \operatorname{tr}(U^{\mathsf{T}} L_{sym} U), \ s.t. \ U^{\mathsf{T}} U = I.
```

- the solution of the problem is given by the first k eigenvectors of the normalized graph Laplacian $L_{sym} = I D^{-\frac{1}{2}}WD^{-\frac{1}{2}}$
- W is adjacency matrix, and D is degree matrix
- Clustering over the feature space U

Spectral clustering on multi-layer graph

- The final data representation (latent representation) must be consistent with all graph layers
- Measure closeness of two latent space

$$d_{Proj}^{2}(S_{1}, S_{2}) = \frac{1}{2} ||S_{1}S_{1}^{\mathsf{T}} - S_{2}S_{2}^{\mathsf{T}}||_{F}^{2},$$

• Measure closeness between target space S and other domain specific space $\{S_i\}$

$$d_{Proj}^{2}(S, \{S_{i}\}_{i=1}^{M}) = kM - \sum_{i=1}^{M} \operatorname{tr}(SS^{\mathsf{T}}S_{i}S_{i}^{\mathsf{T}}).$$

Spectral clustering on multi-layer graph

• Optimization target

$$\begin{split} & \min_{U \in \mathbb{R}^{n \times k}} \sum_{i=1}^{M} \operatorname{tr}(U^{\mathsf{T}} L_{i} U) + \alpha (kM - \sum_{i=1}^{M} \operatorname{tr}(UU^{\mathsf{T}} U_{i} U_{i}^{\mathsf{T}}) \\ & = \min_{U \in \mathbb{R}^{n \times k}} \operatorname{tr}(U^{\mathsf{T}} \sum_{i=1}^{M} (L_{i} - \alpha U_{i} U_{i}^{\mathsf{T}}) U), \end{split}$$

• The same as one graph layer, the solution of the problem is given

by the first k eigenvectors of
$$\sum_{i=1}^{M} (L_i - \alpha U_i U_i^{\mathsf{T}})$$

Incorporating inter-layer relationship

- Real world problems often require a consideration of inter-layer relationship (similarity)
- New optimization target for the i-th layer

$$\min_{\hat{U}_i \in \mathbb{R}^{n \times k}} \operatorname{tr}(\hat{U}_i^{\mathsf{T}} L_i \hat{U}_i) + \beta_i (kM - \sum_{j=1, j \neq i}^M w_{i,j} \operatorname{tr}(\hat{U}_i \hat{U}_i^{\mathsf{T}} U_j U_j^{\mathsf{T}}))$$

$$= \min_{\hat{U}_i \in \mathbb{R}^{n \times k}} \operatorname{tr}(\hat{U}_i^{\mathsf{T}}(L_i - \beta_i \sum_{j=1, j \neq i}^{M} w_{i,j} U_j U_j^{\mathsf{T}}) \hat{U}_i),$$

• New regularized Laplacian Matrix

$$\hat{L}_i := L_i - \beta_i \sum_{j=1, j \neq i}^M w_{i,j} U_j U_j^{\mathsf{T}}.$$

Incorporating inter-layer relationship

• Final optimization target

Computing Inter-Layer Relationship

- Define N × N k-clustering co-occurrence matrices $M_{q,k}$, $M_{w,k}$, in which each value $m_{i,j}$ is equal to 1 if user i is assigned to the same cluster as user j in both layers w and q, and 0 otherwise
- Similarity between layer q and w

$$sim(w, q) = \left(\sum_{k=2}^{K} \left(1 - \frac{||M_{w,k} - M_{q,k}||}{\sqrt{N(N-1)}}\right)\right) / (K-1).$$

Algorithm

Algorithm $1 C^3 R$ clustering

- 1: **function** CLUSTER($\{W_i\}_{i=1}^M, W_R, k, \alpha, \{\beta_i\}_{i=1}^M$)
 - {W_i}^M_{i=1} are weighted adjacency matrices of layers {G_i}^M_{i=1}, W_R is adjacency matrix of inter-layer similarity graph, k is target number of clusters, α and {β_i}^M_{i=1} are regularization parameters
- 2: **for** $i \leftarrow [0; M 1]$ **do**
- 3: Compute L_i and U_i for G_i [50]
 - \triangleright *L_i* is the normalized Laplacian matrix of the layer *i*,
 - U_i is subspace representation of the layer *i*,
 - G_i is *ith* layer graph
- 4: Compute $\hat{L}_i \leftarrow L_i \beta_i \sum_{j=1, j \neq i}^M w_{i,j} U_j U_j^{\mathsf{T}}$
 - $\triangleright \, \hat{L}_i$ is the regularized Laplacian matrix of ith layer

Compute $\hat{U}_i \in \mathbb{R}^{N \times k}$ 5: $\triangleright \hat{U}_i$ is the the matrix of first k eigenvectors of \hat{L}_i [28] end for 6: Compute $\hat{L}_{mod} \leftarrow \sum_{i=1}^{M} (\hat{L}_i - \alpha \hat{U}_i \hat{U}_i^{\mathsf{T}})$ 7: ▶ \hat{L}_{mod} is the modified Laplacian matrix [12] Compute $U \in \mathbb{R}^{N \times k}$ 8: ▷ U is the matrix of first k eigenvectors [28] of \hat{L}_{mod} Normalize rows of U to get U_{norm} 9: $\{C\}_{i=1}^k \leftarrow \text{FINALCLUSTERING}(U_{norm})$ 10: ▶ FINALCLUSTERING() is k-means or x-means clustering return $\{C\}_{i=1}^k$ 11:

▶ $C_1, ..., C_k$ are cluster assignment

12: end function

Overview

- Online recommendation(1+3)
 - Fast online updating
 - Capture both long-term and drifted interests
 - Modeling new users or items
- Recommendation with Social Networks(2+1)
 - Group representation
 - Sequence-aware Recommendation
 - Community detection avoiding privacy concerns
- Improve traditional methods(3)
 - APR, CMN, Bandit problem

Adversarial Personalized Ranking for Recommendation

- Optimizing MF with BPR leads to a recommender model that is not robust
- The resultant model is highly vulnerable to adversarial perturbations on its model parameters, which **implies the possibly large error in generalization**
- To enhance the **robustness** of a recommender model and thus improve its **generalization performance**

Adversarial Noises

• Defined as the perturbations that aim to maximize the objective function of BPR

$$\Delta_{adv} = \arg \max_{\Delta, \, ||\Delta|| \le \epsilon} L_{BPR}(\mathcal{D}|\hat{\Theta} + \Delta),$$

• Approximation

$$\Delta_{adv} = \epsilon \frac{\Gamma}{||\Gamma||} \quad \text{where} \quad \Gamma = \frac{\partial L_{BPR}(\mathcal{D}|\hat{\Theta} + \Delta)}{\partial \Delta}.$$

BPR-MF is Vulnerable

Adversarial Personalized Ranking

$$\begin{split} L_{APR}(\mathcal{D}|\Theta) &= L_{BPR}(\mathcal{D}|\Theta) + \lambda L_{BPR}(\mathcal{D}|\Theta + \Delta_{adv}), \\ \text{where} \quad \Delta_{adv} &= \arg \max_{\Delta, ||\Delta|| \leq \epsilon} L_{BPR}(\mathcal{D}|\hat{\Theta} + \Delta), \end{split}$$

$$\Theta^*, \Delta^* = \arg\min_{\Theta} \max_{\Delta, ||\Delta|| \le \epsilon} L_{BPR}(\mathcal{D}|\Theta) + \lambda L_{BPR}(\mathcal{D}|\Theta + \Delta),$$

SGD learning algorithm for APR

Algorithm 1: SGD learning algorithm for APR.

Input: Training data \mathcal{D} , adversarial noise level ϵ , adversarial regularizer λ , L_2 regularizer λ_{Θ} , learning rate η ; **Output:** Model parameters Θ ;

- 1 Initialize Θ from BPR ;
- ² while Stopping criteria is not met do
- 3 Randomly draw (u, i, j) from D; // Constructing adversarial perturbations
- 4 $\Delta_{adv} \leftarrow \text{Equation (8)};$ // Updating model parameters

5
$$\Theta \leftarrow \text{Equation (11)};$$

6 end

7 return Θ

$$l_{adv}((u,i,j)|\Delta) = -\lambda \ln \sigma(\hat{y}_{ui}(\hat{\Theta} + \Delta) - \hat{y}_{uj}(\hat{\Theta} + \Delta)).$$

$$\Delta_{adv} = \epsilon \frac{\Gamma}{||\Gamma||} \quad \text{where} \quad \Gamma = \frac{\partial l_{adv}((u, i, j)|\Delta)}{\partial \Delta}. \tag{8}$$

$$\begin{split} l_{APR}((u, i, j)|\Theta) &= -\ln \sigma(\hat{y}_{ui}(\Theta) - \hat{y}_{uj}(\Theta)) + \lambda_{\Theta} ||\Theta||^2 \\ &- \lambda \ln \sigma(\hat{y}_{ui}(\Theta + \Delta_{adv}) - \hat{y}_{uj}(\Theta + \Delta_{adv})). \end{split}$$

$$\Theta = \Theta - \eta \frac{\partial l_{APR}((u, i, j)|\Theta)}{\partial \Theta}, \qquad (11)$$

RQ1 How is the effect of adversarial learning? Can AMF improve over MF-BPR by performing adversarial learning?

RQ2 How does AMF perform compared with state-of-the-art item recommendation methods?

	Yelp, HR		Yelp, NDCG		Pinterest, HR		Pinterest, NDCG		Gowalla, HR		Gowalla, NDCG		RI
	K=50	K=100	K=50	K=100	K=50	K=100	K=50	K=100	K=50	K=100	K=50	K=100	
ItemPop	0.0405	0.0742	0.0114	0.0169	0.0294	0.0485	0.0085	0.0116	0.1183	0.1560	0.0367	0.0428	+416%
MF-BPR	0.1053	0.1721	0.0312	0.0420	0.2226	0.3403	0.0696	0.0886	0.4061	0.5072	0.1714	0.1878	+11.2%
CDAE [35]	0.1041	0.1733	0.0293	0.0405	0.2254	0.3495	0.0672	0.0873	0.4435	0.5483	0.1837	0.2007	+9.5%
IRGAN [31]	0.1119	0.1765	0.0361*	0.0465*	0.2254	0.3363	0.0724	0.0904	0.4157	0.518	0.1853	0.2019	+5.9%
NeuMF [17]	0.1135	0.1817	0.0335	0.0445	0.2342	0.3526	0.0734	0.0925	0.4558	0.5642	0.1962	0.2138	+2.9%
AMF	0.1176*	0.1885*	0.0350	0.0465*	0.2375*	0.3595*	0.0741*	0.0938*	0.4693*	0.5763*	0.2039*	0.2212*	-

RQ3 How do the hyper-parameters ϵ and λ affect the performance and how to choose optimal values?

Conclusion and Others(maybe in next pre)

- Online recommendation(1+3)
- Recommendation with Social Networks(2+1)
 - Group representation, community detection, sequence-aware Rec
- Improve traditional methods(3)
 - APR, CMN, Bandit problem
- Recommendation with Knowledge Base(1)
- Some specific tasks(5)
 - Recommend email, mention, citation, Wikipedia article section
 - conversational recommender system
- User modeling: Geo-social based(1)

Thank you