SIGIR18 Papers about Recommendation

Wu, 2019/5/14

Recall

- Online recommendation(1)
- Recommendation with Social Networks(2+1)
 - Group representation, community detection, sequence-aware Rec
- Recommendation with Knowledge Base(1)
- Improve traditional methods(3)
 - APR, CMN, Bandit problem
- Some specific tasks(5)
 - Recommend email, mention, citation, Wikipedia article section
 - Conversational recommender system
- User modeling: Geo-social based(1)

Outline

- Memory Networks
- Recommendation with Knowledge Base
- CMN: Collaborative Memory Network for Recommendation
- APR: Adversarial Personalized Ranking for Recommendation

A Question Answer(QA) Scenario

• Memory:

Joe went to the kitchen

Fred went to the kitchen

Joe picked up the milk

Joe travelled to the office

Joe left the milk

Joe went to the bathroom

• QA:

- Where is the milk now? A: office
- Where is Joe? A: bathroom
- Where was Joe before the office? A: kitchen

Memory Networks

- A memory **m**, and four components I, G, O and R.
 - I: input feature map
 - G(generalization): updates old memories given the new input
 - O: output feature map
 - R(response): converts the output feature into response format desired

Memory Networks

- A general flow when given an input *x*:
 - Convert x in to an feature representation I(x).
 - Update memory **m**: $m_i = G(m_i, I(x), m)$, for any i
 - Compute output features o: o = O(I(x), m)
 - Decode *o* to give final response: r = R(o)

• I & G modules: stores the text in the next available space • $m_N = x$, N = N + 1

Joe went to the kitchen

Fred went to the kitchen

Joe picked up the milk

Joe travelled to the office

Joe left the milk

Joe went to the bathroom

• O module produces output features by finding k supporting memories given input x

$$o_1 = O_1(x, \mathbf{m}) = \underset{i=1,...,N}{\operatorname{arg max}} s_O(x, \mathbf{m}_i)$$
$$o_2 = O_2(x, \mathbf{m}) = \underset{i=1,...,N}{\operatorname{arg max}} s_O([x, \mathbf{m}_{o_1}], \mathbf{m}_i)$$

- Example: given question 'Where is the milk now? '
 - m_{o1} : Joe left the milk
 - m_{*o*2}: Joe travelled to the office

• R module returns a textual response r(a word here).

$$r = \operatorname{argmax}_{w \in W} s_R([x, \mathbf{m}_{o_1}, \mathbf{m}_{o_2}], w)$$

• Example: r = office

•
$$s_o = s_R = s(x, y)$$
:
 $s(x, y) = \Phi_x(x)^\top U^\top U \Phi_y(y).$

• Every word in the dictionary has three different representations: one for $\Phi_y(.)$ and two for $\Phi_x(.)$ for query and memory.

• How to train model: a fully supervised setting

$$\sum_{\bar{f} \neq \mathbf{m}_{o_1}} \max(0, \gamma - s_O(x, \mathbf{m}_{o_1}) + s_O(x, \bar{f})) + \sum_{\bar{f}' \neq \mathbf{m}_{o_2}} \max(0, \gamma - s_O([x, \mathbf{m}_{o_1}], \mathbf{m}_{o_2}]) + s_O([x, \mathbf{m}_{o_1}], \bar{f}'])) + \sum_{\bar{f}' \neq r} \max(0, \gamma - s_R([x, \mathbf{m}_{o_1}, \mathbf{m}_{o_2}], r) + s_R([x, \mathbf{m}_{o_1}, \mathbf{m}_{o_2}], \bar{r}]))$$

• Problem: need too many supervising information

• I and G: A memory pool

m	C
Joe went to the kitchen	Joe went to the kitchen
Fred went to the kitchen	Fred went to the kitchen
Joe picked up the milk	Joe picked up the milk
Joe travelled to the office	Joe travelled to the office
Joe left the milk	Joe left the milk
Joe went to the bathroom	Joe went to the bathroom

- **m**: input memory or key memory
- c: output memory or value memory or external memory

Sukhbaatar S, Weston J, Fergus R. End-to-end memory networks[C]//Advances in neural information processing systems. 2015: 2440-2448.

• O: given a query **q**, read out representation **u** with attention

Softmax
$$(z_i) = e^{z_i} / \sum_j e^{z_j}$$

$$p_i = \operatorname{Softmax}(u^T m_i).$$

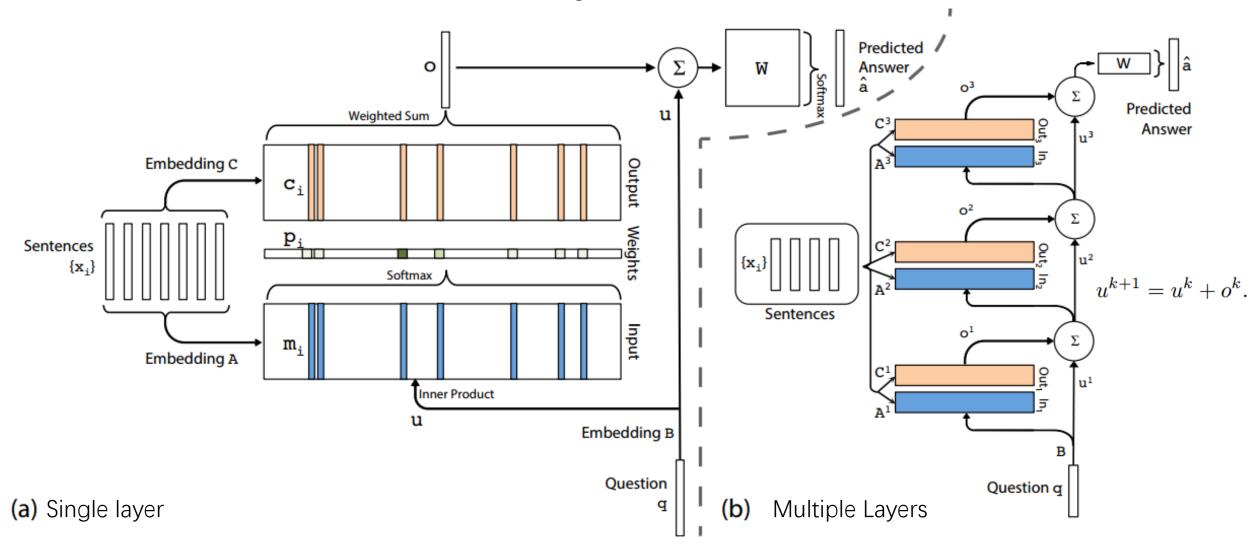
$$o = \sum_{i} p_i c_i.$$

• p_i can be as the similarity between (key) memory m_i and query u

• R: give an answer

 $\hat{a} = \operatorname{Softmax}(W(o+u))$

- Loss: L(a, \hat{a})
- Train: end to end, no internal supervising

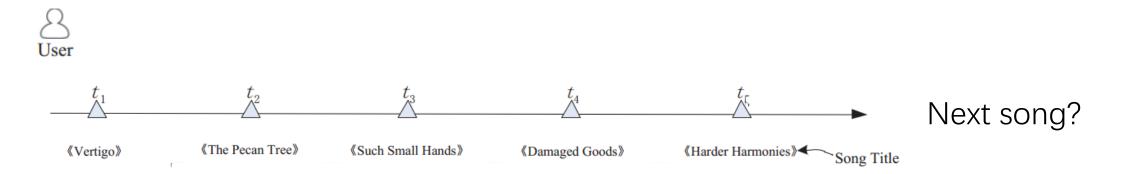


Outline

- Memory Networks
 I, G, O, R
- Recommendation with Knowledge Base
- CMN: Collaborative Memory Network for Recommendation
- APR: Adversarial Personalized Ranking for Recommendation

A Sequential Recommendation Scenario

- Given the interaction sequence of user u, we would like to infer the item that user u will interact with at next time
- An example



A GRU-based Sequential Recommender

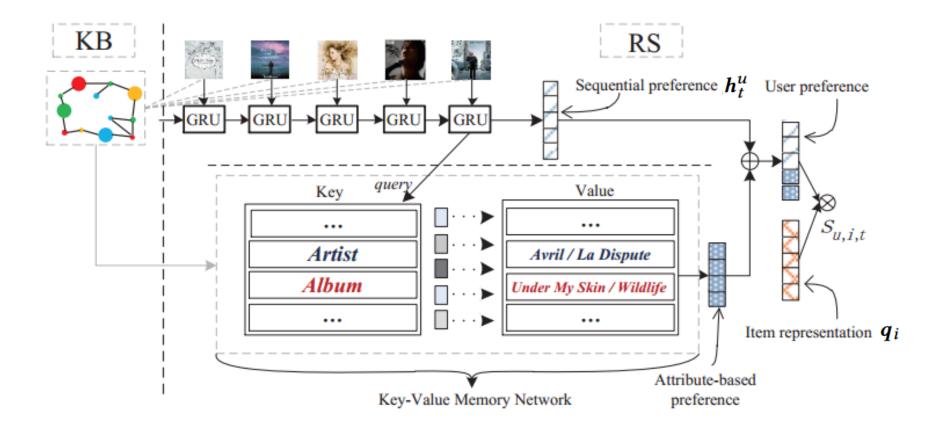
• Sequential preference representation of user u at time t:

$$\boldsymbol{h}_{t}^{u} = \operatorname{GRU}(\boldsymbol{h}_{t-1}^{u}, \boldsymbol{q}_{i_{t}}; \Theta)$$

• Predict the score of next item *i*:

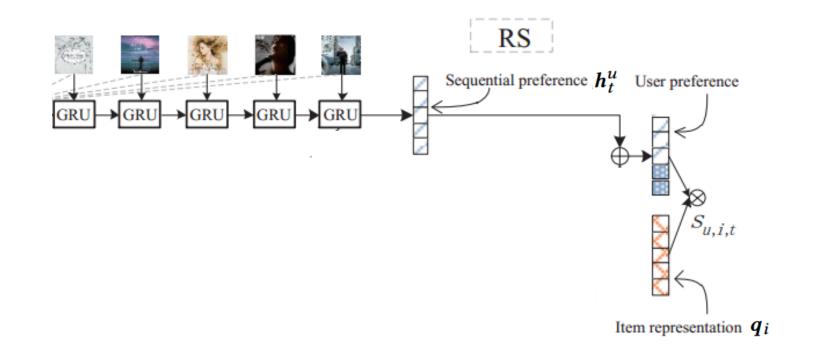
$$s_{u,i,t} = g(u,i,t) = \boldsymbol{h}_t^{u^{\top}} \cdot \boldsymbol{q}_i,$$

Add Knowledge Base Information

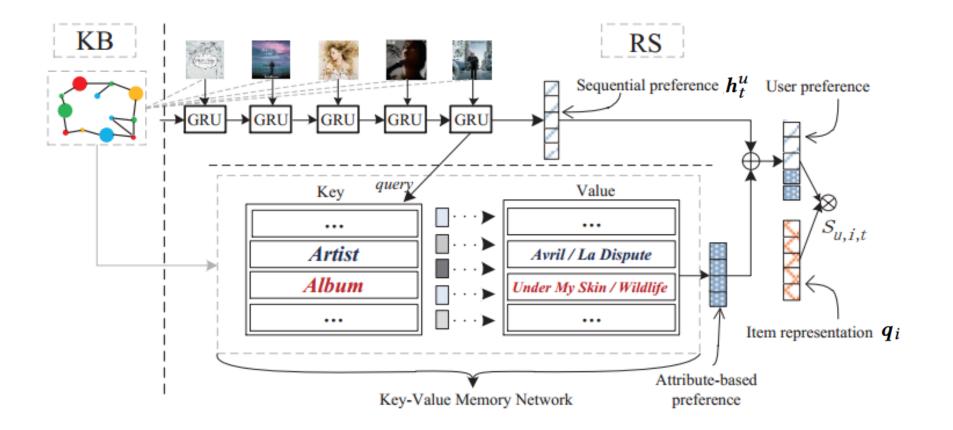


Huang J, Zhao W X, Dou H, et al. Improving sequential recommendation with knowledge-enhanced memory networks[C]//The 41st International ACM SIGIR Conference on Research & Development in Information Retrieval. ACM, 2018: 505-514.

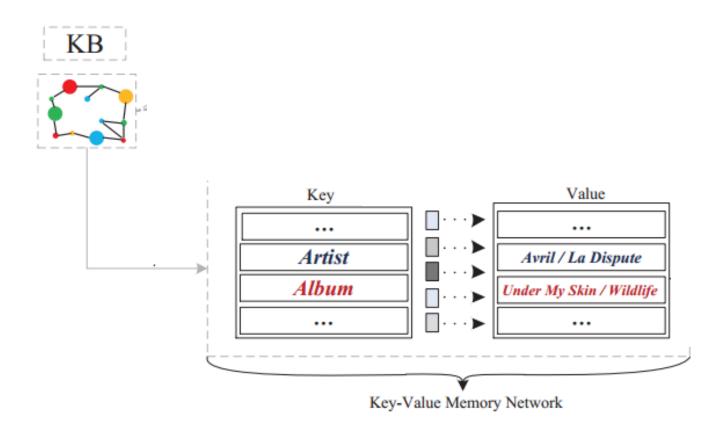
Add Knowledge Base Information



Add Knowledge Base Information



Build Memory Network using KB



Build Memory Network using KB

- In KB, an item has A kinds of attribute information $\{(k_1, v_1^u), \cdots, (k_A, v_A^u)\}$
- I: How to represent the key and value: TransE
 - e_1 : item, a song
 - *r*: attribute, like singer
 - e_2 : attribute value, like Adala

$$\sum_{\{\langle e_1, r, e_2 \rangle\}} \| e_1 + r - e_2 \|$$

Build Memory Network for a User

- G: use embeddings of attributes as key memory
- G: update value memory. Write operation for a new item *i*

$$\{\boldsymbol{v}_1^u, \cdots, \boldsymbol{v}_A^u\}^{new} \leftarrow \text{WRITE}(\{(\boldsymbol{k}_1, \boldsymbol{v}_1^u), \cdots, (\boldsymbol{k}_A \boldsymbol{v}_A^u)\}^{old}, \underline{\boldsymbol{e}_i}),$$

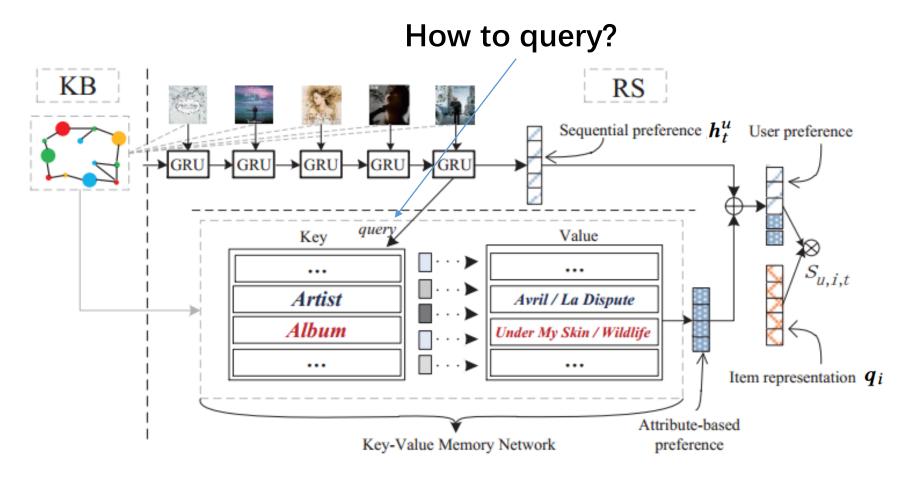
• The update value of attribute *a* is calculated as:

$$\boldsymbol{e}_a^i = \boldsymbol{e}_i + \boldsymbol{r}_a,$$

• Update with gate:

$$z_a = \operatorname{sigmoid}(\boldsymbol{v}_a^{u \top} \cdot \boldsymbol{e}_a^i).$$
$$\boldsymbol{v}_a^u \leftarrow (1 - z_a) \cdot \boldsymbol{v}_a^u + z_a \cdot \boldsymbol{e}_a^i.$$

Using Memory Network Information

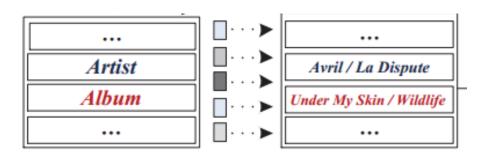


Using memory network info

• O: Read operation

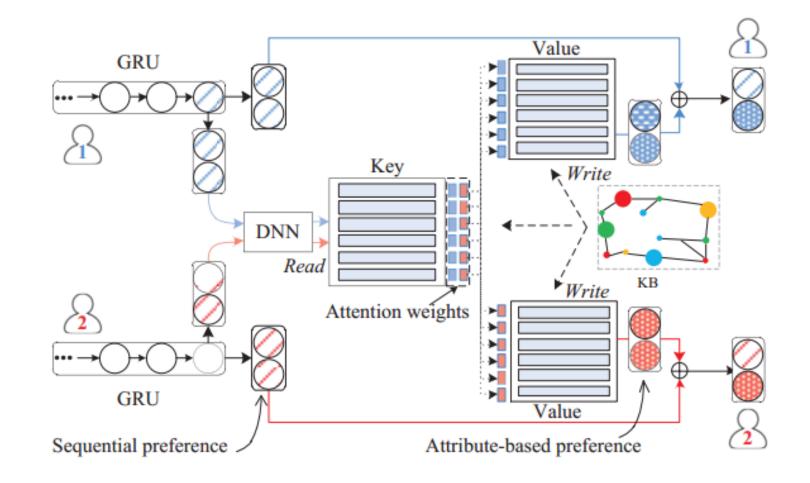
$$\tilde{\boldsymbol{h}}_{t}^{u} = \mathrm{MLP}(\boldsymbol{h}_{t}^{u})$$
$$\boldsymbol{m}_{t}^{u} \leftarrow \mathrm{READ}(\{(\boldsymbol{k}_{1}, \boldsymbol{v}_{1}^{u}), \cdots, (\boldsymbol{k}_{A}, \boldsymbol{v}_{A}^{u})\}, \underline{\tilde{\boldsymbol{h}}_{t}^{u}}),$$

• Read with attention:

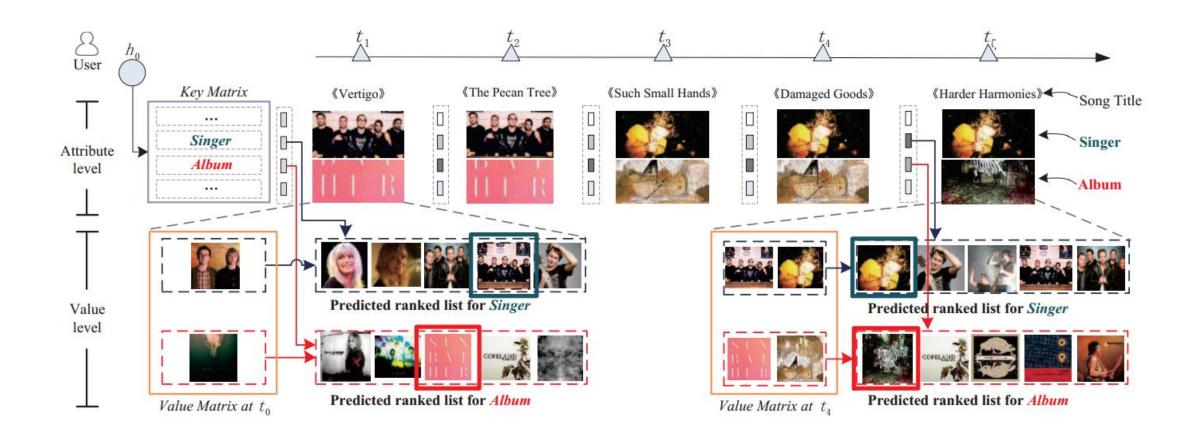


$$m_t^u \leftarrow \sum_{a=1}^A w_{t,u,a} \cdot \boldsymbol{v}_a^u,$$
$$w_{t,u,a} = \frac{\exp(\gamma \tilde{\boldsymbol{h}}_t^u \cdot \boldsymbol{k}_a)}{\sum_{a'=1}^A \exp(\gamma \tilde{\boldsymbol{h}}_t^u \cdot \boldsymbol{k}_{a'})},$$

Overall architecture



Experiments



Outline

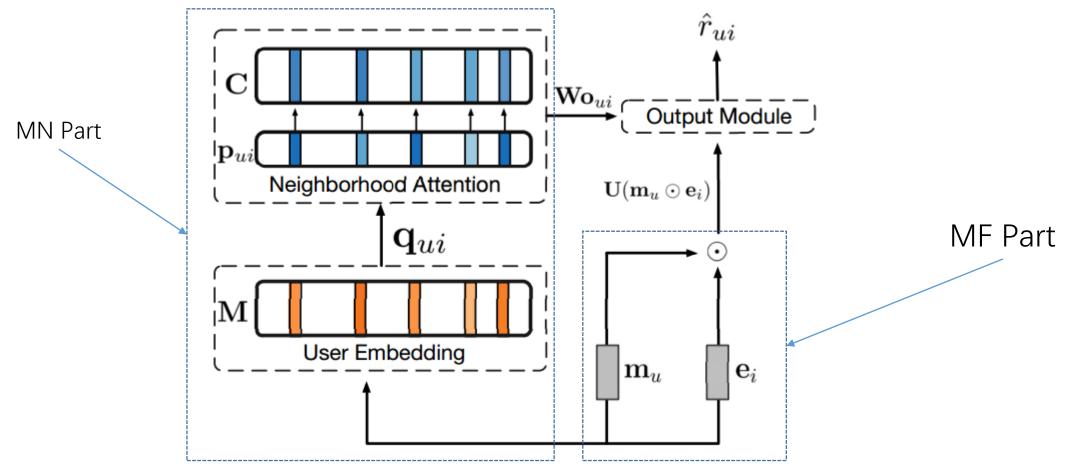
- Memory Networks
 - I, **G**, **O**, R
- Recommendation with Knowledge Base
 - Key-Value Memory Network
- CMN: Collaborative Memory Network for Recommendation
- APR: Adversarial Personalized Ranking for Recommendation

Collaborative Memory Network for Recommendation Systems

- Motivation:
 - Three categories of collaborative filtering (CF) methods
 - Memory or neighborhood-based methods, like KNN
 - Latent factor models, like Matrix Factorization
 - Hybrid models, like Factorization Machines
 - Neighborhood methods capture local structure.
 - Latent factor models capture the overall global structure of the user and item relationships
- Unify Memory Networks and neural attention mechanisms for CF

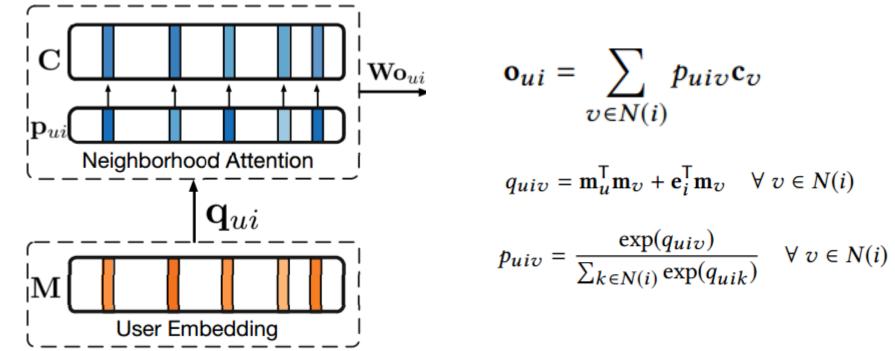
Collaborative Memory Network

• User memory matrix M, Item memory E,



Memory Network Part

- For a user, fetch the preference of his neighbors
- I & G: preference of neighbors is an external embedding matrix ${\boldsymbol{C}}$
- O: for a query user-item pair (u, i), read with attention



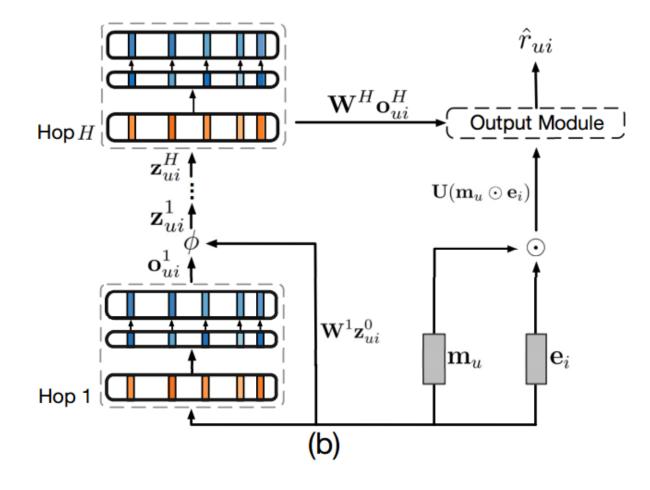
Output Module

• R: output the final predicted score

$$\hat{r}_{ui} = \mathbf{v}^{\mathsf{T}} \phi \big(\mathbf{U}(\mathbf{m}_u \odot \mathbf{e}_i) + \mathbf{W} \mathbf{o}_{ui} + \mathbf{b} \big)$$

$$\begin{array}{c} & & \hat{r}_{ui} \\ \mathbf{v}_{ui} & & \mathbf{v}_{ui} \\ \mathbf{v}_{ui} & & \mathbf{v$$

Multi Hops



Query vector z at h layer $\mathbf{z}_{ui}^{h} = \phi(\mathbf{W}^{h}\mathbf{z}_{ui}^{h-1} + \mathbf{o}_{ui}^{h} + \mathbf{b}^{h})$ $\mathbf{z}_{ui}^{0} = \mathbf{m}_{u} + \mathbf{e}_{i}.$

New weight

$$q_{ui\upsilon}^{h+1} = (\mathbf{z}_{ui}^h)^{\mathsf{T}} \mathbf{m}_{\upsilon} \quad \forall \ \upsilon \in N(i)$$

Outline

- Memory Networks
 - I, **G**, **O**, R
- Recommendation with Knowledge Base
 - Key-Value Memory Network built from KB
- CMN: Collaborative Memory Network for Recommendation
 - External memory matrix for users
- APR: Adversarial Personalized Ranking for Recommendation

Adversarial Personalized Ranking for Recommendation

- Motivation: Optimizing MF with BPR leads to a recommender model that is **not robust**
- The resultant model is highly vulnerable to adversarial perturbations on its model parameters, which **implies the possibly large error in generalization**
- To enhance the **robustness** of a recommender model and thus improve its **generalization performance**

Adversarial Noises

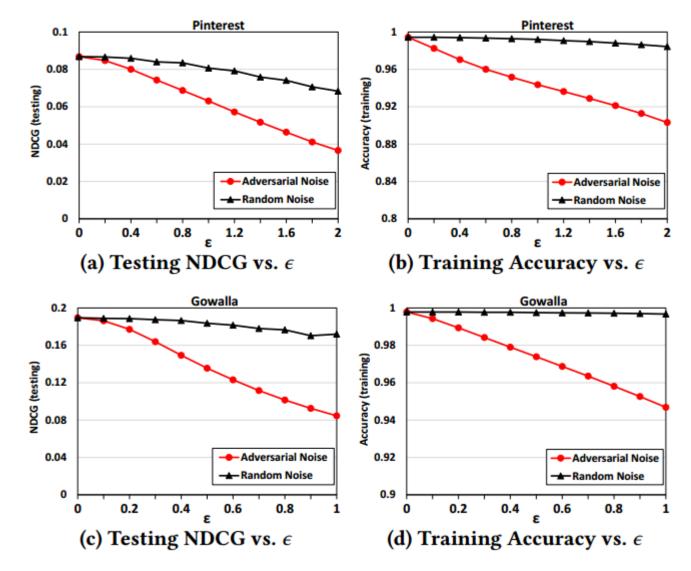
• Defined as the perturbations that aim to maximize the objective function of BPR

$$\Delta_{adv} = \arg \max_{\Delta, \, ||\Delta|| \leq \epsilon} L_{BPR}(\mathcal{D}|\hat{\Theta} + \Delta),$$

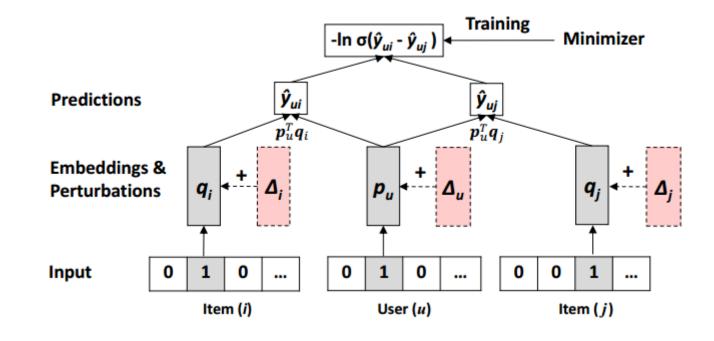
• Approximation

$$\Delta_{adv} = \epsilon \frac{\Gamma}{||\Gamma||} \quad \text{where} \quad \Gamma = \frac{\partial L_{BPR}(\mathcal{D}|\hat{\Theta} + \Delta)}{\partial \Delta}.$$

BPR-MF is Vulnerable



Adversarial Personalized Ranking



$$\begin{split} L_{APR}(\mathcal{D}|\Theta) &= L_{BPR}(\mathcal{D}|\Theta) + \lambda L_{BPR}(\mathcal{D}|\Theta + \Delta_{adv}), \\ \text{where} \quad \Delta_{adv} &= \arg \max_{\Delta, ||\Delta|| \leq \epsilon} L_{BPR}(\mathcal{D}|\hat{\Theta} + \Delta), \end{split}$$

$$\Theta^*, \Delta^* = \arg\min_{\Theta} \max_{\Delta, ||\Delta|| \le \epsilon} L_{BPR}(\mathcal{D}|\Theta) + \lambda L_{BPR}(\mathcal{D}|\Theta + \Delta),$$

SGD learning algorithm for APR

Algorithm 1: SGD learning algorithm for APR.

Input: Training data \mathcal{D} , adversarial noise level ϵ , adversarial regularizer λ , L_2 regularizer λ_{Θ} , learning rate η ; **Output:** Model parameters Θ ;

- 1 Initialize Θ from BPR ;
- ² while Stopping criteria is not met do
- 3 Randomly draw (u, i, j) from D; // Constructing adversarial perturbations
- 4 $\Delta_{adv} \leftarrow \text{Equation (8)};$ // Updating model parameters

5
$$\Theta \leftarrow \text{Equation (11)};$$

6 end

7 return Θ

$$l_{adv}((u,i,j)|\Delta) = -\lambda \ln \sigma(\hat{y}_{ui}(\hat{\Theta} + \Delta) - \hat{y}_{uj}(\hat{\Theta} + \Delta)).$$

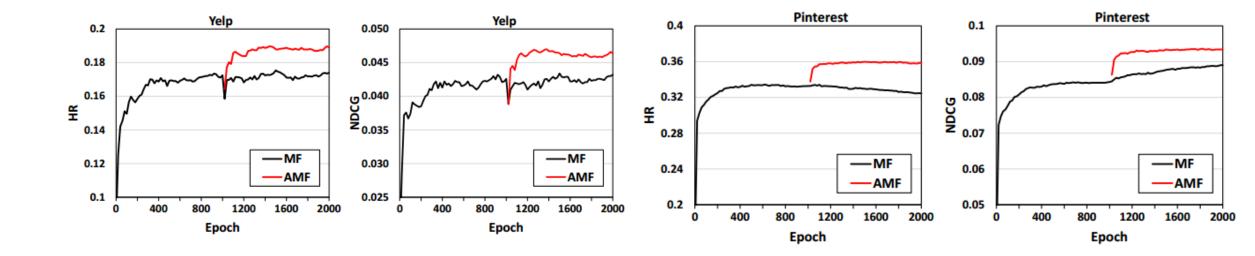
$$\Delta_{adv} = \epsilon \frac{\Gamma}{||\Gamma||} \quad \text{where} \quad \Gamma = \frac{\partial l_{adv}((u, i, j)|\Delta)}{\partial \Delta}.$$
 (8)

$$\begin{split} l_{APR}((u, i, j)|\Theta) &= -\ln \sigma(\hat{y}_{ui}(\Theta) - \hat{y}_{uj}(\Theta)) + \lambda_{\Theta} ||\Theta||^2 \\ &- \lambda \ln \sigma(\hat{y}_{ui}(\Theta + \Delta_{adv}) - \hat{y}_{uj}(\Theta + \Delta_{adv})). \end{split}$$

$$\Theta = \Theta - \eta \frac{\partial l_{APR}((u, i, j)|\Theta)}{\partial \Theta}, \qquad (11)$$

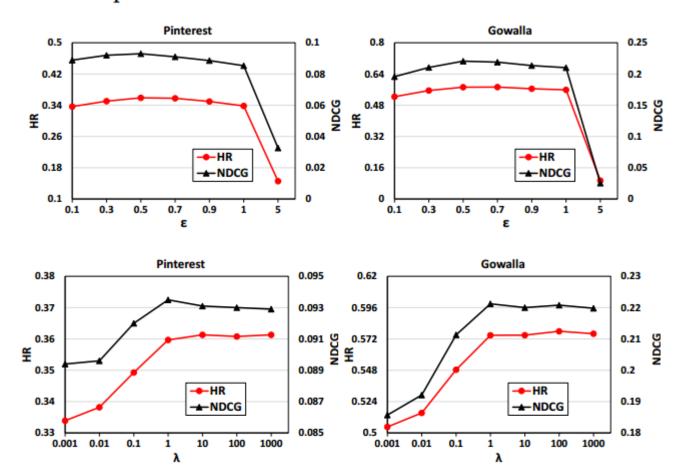
Experiments

RQ1 How is the effect of adversarial learning? Can AMF improve over MF-BPR by performing adversarial learning?



Experiments

RQ3 How do the hyper-parameters ϵ and λ affect the performance and how to choose optimal values?



Thank you