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1 Task description
Please derive a backpropagation process

(1) for the multi-layer neural network with one hidden layer, where data are in a m-dimensional
feature space with n classes. Loss functions can use L2 distance or cross entropy.

(2) for the LeNet-5 CNN.

2 For Multilayer neural network with one hidden layer [1]
As shown in Figure 1, we denote input layer as x and xk represents the value of the k-th unit of
input layer. we denote a(.) as the activation function, o(1) as the activation of the hidden layer,
and {W (1), b(1)} as the weights and bias from input layer to hidden layer, then the hidden layer,
denoted as h, is calculated as follows:

o(1) =W (1)x+ b(1) (1)

h = a(o(1)) (2)

As the same as above, we denote output layer as a vector y, the activation as o(2), and the weights
and bias from hidden layer to output layer as {W (2), b(2)}, then the output vector is calculated as
follows:

o(2) =W (2)h+ b(2) (3)

y = a(o(2)) (4)

Finally, we denote the true target value as a vector t and the error function as L(t, y).

Figure 1: Multilayer neural network with one hidden layer

1



2.1 General back-propagation
Then, in the back-propagation process, the gradients of each weight and bias from can be estimate
using chain derivation rule as follows:
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2.2 L2 difference loss
For the l2 difference loss function defined as follows,

L(t, y) =
1

2

∑
i

(ti − yi)2 (9)
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we substitute ∂L(t,y)
∂yi

in the equations from 5 to 8 with (yi − ti). Then we can get
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2.3 Cross entropy loss
For the cross entropy loss function defined as follows,

L(t, y) =
∑
i

−ti log yi (15)

∂L(t, y)

∂yi
= − ti

yi
(16)

2



Figure 2: The overall architecture of LeNet-5

we substitute ∂L(t,y)
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in the equations from 5 to 8 with − ti
yi
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2.4 Sigmoid activation function
If the activation function a(.) is the sigmoid function defined as follows,

a(x) =
1

1 + exp−x
(21)

∂a(x)

∂x
= a(x)(1− a(x)) (22)

then the corresponding ∂a(x)
∂x can be substituted with a(x)(1− a(x)) as the same as above.

3 For the LeNet-5 CNN [3, 2]
As shown in Figure 2, LetNet-5 consists of three different kind of operations: convolution, pooling
and full connection layer. The full connection layer is just the network operation we introduce in
section 2. So here we take a look at what are convolution and pooling operation at first.

3.1 Convolution in CNN
In Mathematics, for discrete variables, Convolution function is defined as follows:

(I ∗K)ij =

k1−1∑
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Usually, the latter format is more straightforward to implement in a machine learning model. We
substitute kernel K(−m,−n) with a flipped kernel K(m,n), then we get the cross correlation
function:

(I ⊗K)ij =

k1−1∑
m=0

k2−1∑
n=0

I(i+m, j + n)K(m,n) (25)

Because in CNN, kernel function K is a matrix with parameters to be trained, the cross correlation
function could get the same result as convolution function with a flipped kernel matrix K. For cross
correlation function is more straightforward to implement, we use it implement convolution layer
in CNN.

In the case of images, we could have as input an image with height H, width W and C = 3
channels (red, blue and green) such that I ∈ RH×W×C . The number of output channels id D.
Subsequently for a bank of D filters, we have K ∈ Rk1×k2×C×D and biases b ∈ RD, one for each
filter. The output from this convolution procedure is as follows:

(I ∗Kd)ij =

k1−1∑
m=0
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C∑
c=1

Km,n,c,d · Ii+m,j+n,c + bd (26)

We denote the activation function as a(.), the activation of the l-th convolution layer as xlij , and
the output vector of the l-th convolution layer as ol, then,

x1ijd = (I ∗Kd)ij (27)

o1ijd = a(x1ijd) (28)
The following convolution layer is just the same as the first with the input being the output of in
the previous layer in Figure 2.

3.2 Pooling
In LeNet-5, there is a (max) pooling layer each convolution layer. At the pooling layer, forward
propagation results in an N × N pooling block being reduce to a single value. For Max-pooling,
the value is the biggest value in the pooling block. For Average pooling, the value is the average
of all values in the pooling block. We denote the output of l-th pooling layer as pl, then take
max-pooling for an example, we get

plijd = max{olmnd|iN ≤ m < (i+ 1)N, jN ≤ n < (j + 1)N} (29)

For average pooling, we just need substitute operation max with operation avg which mean get
the average of the all values in the set.

3.3 Back propagation for each kind of layer
Convolution between the input feature map of dimension H ×W with C channels and the weight
kernel of dimension k1 × k2 produces an output feature map of size (H − k1 + 1)× (W − k2 + 1).
The number of input channels and output channels are C and D. The gradient component for the
individual weights can be obtained by applying the chain rule in the following way:
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where we denote ∂L(t,y)

∂xl
i,j,d

as δli,j,d that represents the error in layer l.
There is no parameter in pooling layer. And the Gradient rooting is done in the following ways.

1. Max-pooling - the error is just assigned to where it comes from - the “winning unit” because
other units in the previous layer’s pooling blocks did not contribute to it hence all the other
assigned values of zero

2. Average pooling - the error is multiplied by 1/N×N and assigned to the whole pooling block
(all units get this same value).

3.4 Back propagation in LeNet-5
LeNet-5 includes full connection layer, pooling layer and convolution layer. Using chain rule and
gradients in section 2 and 3.3, we can easily get the gradients of all parameters in LeNet-5.
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