Assignment 2: House price predicting

N4A, 2018/10/24

1 Task Description

Use the following dataset to do house price predicting work.

1. hitps://www.kaggle.com/vikrishnan/boston-house-prices (https://www.kaggle.com/vikrishnan/boston-
house-prices)
2. https://github.com/datasets/house-prices-uk (https://github.com/datasets/house-prices-uk)

Details: design a model to do house price predicting work. Linear Regression models including basic linear
model based on polynomial, Ridge Regression, Lasso Regression and regression model based Decision
Tree must be implemented. Regression models based on SVM and Deep Learning is optional.

2 Data Acquisition and Description

2.1 Boston house prices

Although we can download the data from https://www.kaggle.com/vikrishnan/boston-house-prices
(https://www.kaggle.com/vikrishnan/boston-house-prices), here we use API
sklearn. datasets. load_boston to simplify this process.

In [31]:

%matplotlib inline

import numpy as np

import matplotlib. pyplot as plt
from sklearn import datasets

In [32]:

boston = datasets. load boston()

boston X, boston y = np.asarray (boston. data), np.asarray (boston. target)
boston_X = boston X / np. max(boston_X, axis=0)

show data shape

print boston_X. shape, boston_y. shape

(506, 13) (506,)

The dataset consists of 506 samples, the meaning of each dimension of feature x is summarized as bellow.

. CRIM: per capita crime rate by town
. ZN: proportion of residential land zoned for lots over 25,000 sq.ft.
. INDUS: proportion of non-retail business acres per town
. CHAS: Charles River dummy variable (= 1 if tract bounds river; 0 otherwise)
. NOX: nitric oxides concentration (parts per 10 million)
1https://archive.ics.uci.edu/ml/datasets/Housing_(https://archive.ics.uci.edu/ml/datasets/Housing)
123 20.2. Load the Dataset 124
6. RM: average number of rooms per dwelling
7. AGE: proportion of owner-occupied units built prior to 1940
8. DIS: weighted distances to five Boston employment centers
9. RAD: index of accessibility to radial highways
10. TAX: full-value property-tax rate per $10,000
11. PTRATIO: pupil-teacher ratio by town
12. B: 1000(Bk-0.63)2 where Bk is the proportion of blacks by town
13. LSTAT: % lower status of the population

g b ODN -~

y is Median value of owner-occupied homes in $1000s

In [33]:

split train and test sets
from sklearn.model selection import train test split

boston_x_train, boston x test, boston y train, boston vy test = train test split(boston X, boston
_y, test_size=0.1, shuffle=False)

2.2 UK house prices

UK house prices dataset can be aquired here(https:/github.com/datasets/house-prices-uk
(https://github.com/datasets/house-prices-uk)) and then we use pandas to load the csv data.

In [34]:

import pandas as pd

In [35]:

file path = . /uk_house price.csv’
uk = pd.read csv(file path)

In [36]:

check data size
print uk. shape

(261, 9)

In [37]:

show 10 examples

uk[:10]

Out[37]:

Date Price |Change | Price| Change Price Change Price| Change
(AN (All)| (New) (New) | (Modern) | (Modern)| (Older) (Older)

0 :]]195021_ 1891 (0.0 2107 |0.0 2020 0.0 1524 0.0

1 1953- 1891 (0.0 2107 |0.0 2002 0.0 1542 0.0
02-01

2 1953- 1891 (0.0 2107 |0.0 2002 0.0 1542 0.0
05-01

3 1953- 1881 (0.0 2117 |0.0 2002 0.0 1524 0.0
08-01

4 1$ii- 1872 [-1.0 2117 |0.5 1975 -2.2 1542 1.2
1954-

5 02-01 1863 [-1.5 2117 |0.5 1957 -2.2 1524 -1.2
1954-

6 05-01 1872 [-1.0 2117 |0.5 1984 -0.9 1515 -1.7

7 1954- 1863 |[-1.0 2127 |0.5 1948 2.7 1524 0.0
08-01

8 1$iﬁ- 1853 [-1.0 2127 |0.5 1939 -1.8 1515 -1.7

9 1995- 1900 (2.0 2167 |24 1984 1.4 1569 2.9
02-01

In [38]:

uk. dtypes

Out[38]:

Date object

Price (All) int64

Change (All) float64

Price (New) int64

Change (New) float64

Price (Modern) int64

Change (Modern) float64

Price (Older) int64

Change (0lder) float64

dtype: object

3 Algorithms introduction and implementation

3.1 Basic Linear Regression

The simplest linear model for regression is one that involves a linear combination of the input variables. Here,
we donate input variables or features as * = (acl, Cee xD)Tand then the target output is calculated as
follows:

y(z, w) = wy + wiz1+. .. +wyzp

Obviously, this imposes significant limitations on the model. For example, the model can not fit a ploynomial
curve with input x being a scalar. We therefore extend the model by considering linear combinations of fixed
nonlinear functions of the input variables, of the form

M-1
y(z, w) = wo + Z w;¢;(z)
=1

where qb](:c) are known as basic functions. In boston house price predicting problem, the input x is a 13
dimension vector. So we can simply define qu(m) = x ;. On the other hand, in UK house price predicting
problem, the input x is just a scalar. This is a polinomial curve fitting problem. So we can define d)j (z) = x)
and then the curve could be well fitted by the polynomial function.

Besides, We can define ¢ (x) = 1 so that
M-1

y(z, w) = Z w;id;(z) = quS(m)

J=0

Then, Basic Linear Regression estimates the parameters by minimizing the residual sum of squares
between the observed responses, donated as t, in the dataset and the responses(y(w, w)) predicted by the
linear approximation. Mathematically it solves a problem of the form:

. 2
min|[y(z, w) — |

Here, we use sklearn lib to implement the algrithm and the codes are as follows:

In [39]:

from sklearn import linear model as lm

define some basic functions
def rmse(preds, target):
return np. sqrt (np. sum(np. square (preds — target))/ len(preds))

def plot_regression(preds, target, x_axis=None, name= regression’):
plt. figure()
if x_axis is None:
plt.plot(preds, label= predict price’)
plt. plot(target, label="real price’)
else:
plt.plot(x_axis, preds, label="predict price’)
plt.plot(x _axis, target, label=real price’)
plt. legend()
plt. title (name)
plt. show()

def model train test(model, x train, y_train, x_test, y_test, plot_train=False, plot_x_axis=None

model. fit (boston x train, boston_ y train)
test on boston data
test_preds price = model. predict(x_test)
print (rmse on test set of boston data: {:.6f} .format(rmse(test preds price, y test)))
plot result
plot regression(test preds price, y_test, name= Regression result on test set’)
if plot_train:
train preds = model.predict(x_train)
plot regression(train preds, y_train, name=" Regression result on train set’)

In [40]:

check basic linear regression model on boston set

print C check basic linear regression model on boston data set:)

model train test(Im. LinearRegression(), boston x train, boston_ y train, boston x test, boston y_
test)

check basic linear regression model on boston data set:
rmse on test set of boston data: 3.287687

Regression result on test set

1 = predict price |
real price
25 1
20 1
15 A
10
5_

3.2 Ridge Regression

Ridge regression addresses some of the problems of Ordinary Least Squares by imposing a penalty on the
size of coefficients. The ridge coefficients minimize a penalized residual sum of squares,

. 2 2
min [y(z, w) — t],* + al]l

Here, o > 0 is a complexity parameter that controls the amount of shrinkage: the larger the value of , the
greater the amount of shrinkage and thus the coefficients become more robust to collinearity.

The sklearn codes are as follows:

In [41]:

print (check Ridge regression model on boston data set: ')
model train test(Im. Ridge (alpha=.5), boston x_train, boston_y train, boston x test, boston_y_ tes
t)

check Ridge regression model on boston data set:
rmse on test set of boston data: 3.190611

Regression result on test set

301 — predict price
real price
25 1 ﬂ /
1
J /|
20 - /j\ ’ \j\f i
r k/\ \
154 1 [
\ | |
|
10 4
5_ -
] 10 20 kL 40 50

3.3 Lasso Regression

The Lasso is a linear model that estimates sparse coefficients. It is useful in some contexts due to its
tendency to prefer solutions with fewer parameter values, effectively reducing the number of variables upon
which the given solution is dependent. For this reason, the Lasso and its variants are fundamental to the field
of compressed sensing. Under certain conditions, it can recover the exact set of non-zero weights (see
Compressive sensing: tomography reconstruction with L1 prior (Lasso)).

Mathematically, it consists of a linear model trained with ¢; prior as regularizer. The objective function to
minimize is:
. 2
min ————|[y(z, w) — t||; + o |w]];

w samples
The lasso estimate thus solves the minimization of the least-squares penalty with | |w||1 added, where

||w]|, is a constant and is the £;-norm of the parameter vector.

The sklearn codes are as follows:

In [42]:

print (' check Lasso regression model on boston data set: ')
model train test(Ilm. Lasso(alpha=.02), boston x train, boston y train, boston x_ test, boston_y te
st)

check Lasso regression model on boston data set:
rmse on test set of boston data: 3. 108968

Regression result on test set

301 — predict price
real price

25 1

20 1

3.4 Decision Tree Regression

Decision Trees (DTs) are a non-parametric supervised learning method used for classification and
regression. The goal is to create a model that predicts the value of a target variable by learning simple
decision rules inferred from the data features.

A decision tree is a structure that includes a root node, branches, and leaf nodes. Each internal node
denotes a test on an attribute, each branch denotes the outcome of a test, and each leaf node holds a class
label. The topmost node in the tree is the root node.

The following decision tree is for the concept buy_computer that indicates whether a customer at a company
is likely to buy a computer or not. Each internal node represents a test on an attribute. Each leaf node
represents a class.

age
young senior
middle-
aged
Student? yes ' Credit _rating?
no yas fair / \exceent
no yes no yes

As for regression problem, in the example below, decision trees learn from data to approximate a sine curve
with a set of if-then-else decision rules. The deeper the tree, the more complex the decision rules and the
fitter the model.

Decision Tree Regression

The sklearn implementation codes of decision tree regression are as below:

In [43]:

from sklearn. tree import DecisionTreeRegressor

print (check Decision Tree Regression model with depth being 5 on boston data set: ’)

model train_test(DecisionTreeRegressor (max_depth=5), boston x_train, boston y train, boston_x te
st, boston_ y_ test)

check Decision Tree Regression model with depth being 5 on boston data set:
rmse on test set of boston data: 4.297973

Regression result on test set

= predict price
30 1 real price
25 1
20 1
15 A
10 1
0 10 20 0 40 50
In [44]:

print (’ check Decision Tree Regression model with depth being 2 on boston data set: ')
model train test(DecisionTreeRegressor (max depth=2), boston_x_ train, boston y train, boston x te
st, boston_ y_ test)

check Decision Tree Regression model with depth being 2 on boston data set:
rmse on test set of boston data: 4.147044

Regression result on test set

—— predict price
EV R real price
25 -
20 1
15 A
10 A

3.5 SVM Regression

SVM is also known as larger margin classifer which usually has a smaller generalization error. When a SVM
classifier is trained, only the data points that are nearest to decision boundary are left for classify a new data
point. These remaining data points called support vectors.

Of course, we can extend support vector machines to regression problems while at the same time preserving

the property of sparseness. In ridge regression with the output being a scalar, the error function is
N

2 2 2
ly(e, w) = tl]; + allwll; = Y (g — ta)” + alluwl],

n=1

To obtain sparse solutions, the quadratic error function is replaced by an e-insensitive error function that is
given by
0 if ly(x) —t| < e
E.(y() 1) = A
ly(z) — t| — €, otherwise
We therefore minimize a regularized error function given by

N
C> " Buly(®n) — ta) + [Jw]|”
n=1

By convention, the (inverse) regularization parameter, denoted by C, appears in front of the error term.

We can re-express the optimization problem by introducing slack varibles ¢, CZ.* > 0. Then the error
optimization target can be written as

1 7 - .

min, ow w+Ci;(C¢ +¢F)

subject to t; — y(z;) < e+ ¢,
y(z;) —t; <e+ ¢,
G, >0i=1,....n

Its dual form is
1
min E(a — o) TQ(a — a*) + el (a + o) —yF (a — a¥)
a,a
subject to e’ (o — a*) = 0
0<a,a; <C,i=1,...,n

where e is the vector of all ones, C' > 0 is the upper bound and the same as the C above, (Q is an n by n
positive semidefinite matrix, Q;; = K (z;, ;) = ¢(z;)T ¢(z;) is the kernel. Here training vectors are
implicitly mapped into a higher (maybe infinite) dimensional space by the function .

sklearn codes are as follows:

In [45]:

from sklearn. svm import SVR

print (check SVM Regression model with linear kernel on boston data set: ')
model train test(SVR(kernel="linear’), boston_x train, boston y train, boston x_ test, boston y t

est)

check SVM Regression model with linear kernel on boston data set:
rmse on test set of boston data: 3. 726680

Regression result on test set

30 1 — predict price
| real price
25 A
20 A
15
10
T T T T T T
0 10 20 30 40 50
In [46]:

print (check SVM Regression model with sigmoid kernel on boston data set: ')
model train test(SVR(kernel="sigmoid’), boston x_train, boston_ y train, boston x test, boston y_
test)

check SVM Regression model with sigmoid kernel on boston data set:
rmse on test set of boston data: 3.898799

Regression result on test set

30 1 — predict price
| real price

25 A

20

]5 "

10

In [47]:

print (' check SVM Regression model with rbf kernel on boston data set:)
model train test(SVR(kernel= rbf’), boston x train, boston y train, boston x test, boston y test

)

check SVM Regression model with rbf kernel on boston data set:
rmse on test set of boston data: 4.032612

Regression result on test set

30 1 — predict price
| real price
25 1
20 1
15 -
10
T T T T T T
H 10 20 30 40 50
In [48]:

print (check SVM Regression model with poly kernel on boston data set: ')
model train test(SVR(kernel="poly’), boston x_train, boston_y train, boston x test, boston_y_ tes

t)

check SVM Regression model with poly kernel on boston data set:
rmse on test set of boston data: 4.114710

Regression result on test set

30 1 — predict price
| real price

25 1

20 4

15 "

10 4

3.6 Nerual network regression

Here we use the simple multi layer perceptron model to do this work. Multi-layer Perceptron (MLP) is a
supervised learning algorithm that learns a function f() : R™ — RPC by training on a dataset, where m is
the number of dimensions for input and o is the number of dimensions for output while in this task o is 1.
Given a set of features X = x1, x,, ..., x,,and a target , it can learn a non-linear function approximator for
either classification or regression. It is different from logistic regression, in that between the input and the
output layer, there can be one or more non-linear layers, called hidden layers. Figure 1 shows a one hidden

layer MLP with scalar output.
\ Bias

Bias
Features)
(X) /]

The leftmost layer, known as the input layer, consists of a set of neurons {:ri|x1, Toy.nny azm} representing
the input features. Each neuron in the hidden layer transforms the values from the previous layer with a
weighted linear summation w1 + wexs+. . . +w,,x,,, followed by a non-linear activation function

9(:) : R — R-like the hyperbolic tan function. The output layer receives the values from the last hidden
layer and transforms them into output values.

We also use sklearn to implement it.

In [49]:

from sklearn. neural network import MLPRegressor

print (check MLP Regression model with relu activation on boston data set:)
model train test (MLPRegressor(activation="relu’), boston x train, boston y train, boston x test
boston_y_test)

check MLP Regression model with relu activation on boston data set:
rmse on test set of boston data: 3.977414

Regression result on test set

30 1 — predict price
real price

25 1 | /JJ\

o V\ /\/'\f\/

15 4

10

In [50]:

print (' check MLP Regression model with no activation on boston data set: ')
model train test (MLPRegressor (activation="identity’), boston x_train, boston y train, boston x_ t
est, boston_y test)

check MLP Regression model with no activation on boston data set:
rmse on test set of boston data: 4.010192

Regression result on test set

30 1 — predict price
| real price

25 A

20

]5 -

10

In [51]:

print (' check MLP Regression model with two hidden layers and relu activation on boston data se
t:)

model train test (MLPRegressor (hidden layer sizes=(50, 25,), activation= relu’), boston x train,
boston_y_train, boston_x test, boston y test)

check MLP Regression model with two hidden layers and relu activation on boston da
ta set:
rmse on test set of boston data: 3.634077

Regression result on test set

0 — predict price
real price |

25 A

20

15 4

10

In [52]:

print (check MLP Regression model with tree hidden layers and relu activation on boston data se

t:)

model train test (MLPRegressor (hidden layer sizes=(50, 30, 20,), activation= relu’),
boston_x_train, boston y train, boston x test, boston y_test)

check MLP Regression model with tree hidden layers and relu activation on boston d
ata set:
rmse on test set of boston data: 4. 017490

Regression result on test set

—— predict price
30 real price

z: (J | ,/ /\/ v /
sl] A / |

10 A

4 Experiments and Conclusion

4.1 Experiments on boston house prices data set

As described above, boston house price data has 506 samples. We split 10% of the data as a test set and
the left exmaples as a train set. We use RMSE to evaluate the performance of each model. The best results
of each model are showed in the table below. In this experiment, the Lasso Regression outperforms the
others. See section 3 for details.

LinearR [RidgeR | LassoR|DTR [SVR [MLPR

RMSE | 3.1089 |[3.1906 [3.1089 |4.1470|3.7266|3.6340

We can see that SVR model and MLP model with default hyper-parameters are much less effective than we
thought. So, here we tune some hyper-parameters for these two models

In [110]:

print (check SVM Regression model with linear kernel on boston data set: ')

under this setting, the SVR model will be much better

model train test(SVR(C=100, kernel="poly’), boston x train, boston y train, boston_x test, bosto
n_ y test)

check SVM Regression model with linear kernel on boston data set:
rmse on test set of boston data: 3.066366

Regression result on test set

30 1 — predict price
| real price

25

20 -

15 4

10
T T T T T T
0 10 20 30 40 50

In [147]:

print (’ check MLP Regression model with two hidden layers and relu activation on boston data se
t:)
not easy to tune the parameter. just a little better.
model train test (MLPRegressor (hidden layer sizes=(50, 25), alpha=0.01, max_iter=200, learning rat
e init=0.001, activation= relu’),

boston_x_train, boston_ y train, boston x test, boston_ y test)

check MLP Regression model with two hidden layers and relu activation on boston da

ta set:
rmse on test set of boston data: 3.519582

Regression result on test set

0 — predict price
real price |

25 1

20 1

15 -

10

4.2 Experiments on uk house prices data set

This data set includes for types of prices that are chaning over time. The four types are All, New, Modern and
Older. The prices was recorded every three months. So we can change the time with index as input features
to predict four types prices. Here, we first preprocess the data set to fit our requirement.

In [53]:
uk. columns
Out[53]:

Index ([u’ Date’, u Price (All)’, u’ Change (All)’, u Price (New)’,
u Change (New)’, u’ Price (Modern)’, u Change (Modern)’,
u Price (Older)’, u’ Change (Older)’],
dtype="object’)

In [b4]:

price all = uk.iloc[:, 1].values.flatten()
price new = uk.iloc[:, 3].values. flatten()
price modern = uk.iloc[:, 5].values.flatten()
price older = uk.iloc[:, 7].values. flatten()
time = np. arange(len(price all))

In [71]:

extend time to poly features

time f = np.stack([time, time¥time], axis=-1)
In [72]:

time f[:4]

Out[72]:

array ([[0, 0],
1, 1,
(2, 4],
[3, 911)

In [73]:

def fit data(model, y):
model. fit (time f,7y)
return model. predict (time f)

In [74]:

def fit all model (y, name= price’):
lr preds = fit _data(lm. LinearRegression(), y)
rr_preds = fit data(Im. Ridge (alpha=.5), y)
lar preds = fit data(lm. Lasso(), y)
dtr preds = fit_data(DecisionTreeRegressor (max_depth=5), y)
svr_preds = fit _data(SVRQO, v)
mlp preds = fit data (MLPRegressor (hidden layer sizes=(25,), activation= relu’), y)

print rmse value
print C \tLieanrR\tRidgeR\tLassoR\tDTR\tSVR\tMLPR\n’
PRMSENt {:. 1EP\t {:. 1P\t {:. 1P\t {:. 1EP\t {:. 1£3\t {:. 1f}’ . format (rmse (1r_preds, y), rmse(
rr_preds, y), rmse(lar preds, y),
rmse (dtr_preds, y), rmse(
svr_preds, y), rmse(mlp preds, y)))
plot result
plt. figure()
plt. title (name)
plt.plot(y, label="real price’)
plt.plot(Ir preds, label= Linear R’)
plt.plot(rr preds, label="Ridge R’)
plt. plot (lar_preds, label="Lasso R’)
plt.plot(dtr preds, label="DT R’)
plt.plot(svr preds, label="SVR)
plt.plot(mlp preds, label="mlp R’)
plt. legend ()
plt. show()

In [75]:

test all price
fit_all model (price all, name= price all’)

LieanrR RidgeR LassoR DIR SVR MLPR
RMSE 12264. 3 12264.3 12264.3 2708.1 70788.0 19498. 8

price all
—— real price
200000 4 Lin=ar B
- Ridge R
= |asso R
150000 4 DTR
— SR
mip R
100000 4
50000

T T T T
0 50 100 150 200 250

In [76]:

test new price
fit all model (price new, name= price new)

LieanrR RidgeR LassoR DIR SVR MLPR
RMSE 11604. 8 11604.8 11604.8 3233.0 72281.7 14892.9

price new
— real price
Linear R
200000 4 Ridge R
— lasso R
—— DT R
150000 SR
mip R
100000 -
50000
n -
T T T T T T
1] 50 100 150 200 250
In [77]:

test modern price
fit all model (price modern, name=" price modern’)

LieanrR RidgeR LassoR DIR SVR MLPR
RMSE 34627.0 34627.0 34627.0 3362.6 62233.6 34905.7

price modern

175000 1 — real price
Linear R
150000 1 — Ridge R
| Lasso R
125000 4 DT R
w0000 { — VR
mip R
75000 A
50000 1
25000
0 1

In [78]:

test older price
fit all model (price older, name= price older’)

LieanrR RidgeR LassoR DTR SVR MLPR
RMSE 37004. 6 37004.6 37004.6 3314.2 66925.5 37149.6

price older
200000 1 —— real price
Linear R

- Ridge R
150000 4 = Lassoc R

- DT R

— 5SVR
100000 mip R

50000 4 7

T
0 50 100 150 200 250

All'in all, Decision Tree Regression with max depth being 5 is overfitted. SVR with C(see 3.5) being default 1
is always underfitted. Linear Regression, Ridge Regression, Lasso Regression and MLP Regression are ok.

In [90]:

def fit svr model (y, name= price’, C=1):
svr_preds = fit_data(SVR(C=C), y)
print rmse value
print C \tSVR\n’

"RMSE\t{:. 1f}’ . format (rmse (svr_preds, y)))

plot result
plt. figure()
plt. title (name)
plt.plot(y, label= real price’)
plt.plot(svr preds, label="SVR)
plt. legend ()
plt. show()

In [91]:

test all price
fit svr_model (price all, name=" price all’, C=1)

SVR
RMSE 70788.0

price all
— real price
200000 SVR
150000 1
100000 1
50000 4
N —_._'//
T T T T T T
0 50 160 150 200 250
In [93]:

test all price
fit_svr _model (price _all, name=" price all’, C=le4)

SVR
RMSE 63856. 1

price all
— real price

200000 VR
150000 1
100000 1
50000 -

’—_-_—/_f /

D -

T T
0 50 1060 150 200 250

In [94]:

test all price
fit_svr_model (price _all, name= price all’, C=1eb)

SVR
RMSE 11699. 8

price all

—— real price

200000 4 SR

150000 1 f

100000 |
ﬁf
M
50000 - J e
Fd
f*""ﬂ
34“"{'7‘-‘
) I
T T T T T T
0 50 100 150 200 250
In [95]:

test all price
fit_svr_model (price_all, name= price all’, C=1e6)

SVR
RMSE 0.1
price all
| = real price &
200000 i /
f ;‘;
;f wa«;:
150000 - f
ff
100000 /
j
~ /
50000 A f.f S’
,fa"fj‘”'.[
o .
T T T T T T
0 50 100 150 200 250

Note that C is inverse regularization parameter(see 3.5). C is penalty parameter of the error term. The larger
is C, the more sensitive is the model to the error between predicted values and target values and the easier
to be overffited. On the other hand, if C is too small, the model will be underfitted.

